Cyclic group and knapsack facets
نویسندگان
چکیده
Any integer program may be relaxed to a group problem. We define the master cyclic group problem and several master knapsack problems, show the relationship between the problems, and give several classes of facet-defining inequalities for each problem, as well as a set of mappings that take facets from one type of master polyhedra to another.
منابع مشابه
Some Results on facets for linear inequality in 0-1 variables
The facet of Knapsack ploytope, i.e. convex hull of 0-1 points satisfying a given linear inequality has been presented in this current paper. Such type of facets plays an important role in set covering set partitioning, matroidal-intersection vertex- packing, generalized assignment and other combinatorial problems. Strong covers for facets of Knapsack ploytope has been developed in the first pa...
متن کاملOn a Generalization of the Master Cyclic Group Polyhedron
Sanjeeb Dash IBM Research Ricardo Fukasawa Georgia Inst. Tech. Oktay G unl uk IBM Research March 6, 2008 Abstract We study the Master Equality Polyhedron (MEP) which generalizes the Master Cyclic Group Polyhedron and the Master Knapsack Polyhedron. We present an explicit characterization of the polar of the nontrivial facet-de ning inequalities for MEP. This result generalizes similar results...
متن کاملN-step Mingling Inequalities: New Facets for the Mixed-integer Knapsack Set
The n-step mixed integer rounding (MIR) inequalities of Kianfar and Fathi (Math Program 120(2):313–346, 2009) are valid inequalities for the mixedinteger knapsack set that are derived by using periodic n-step MIR functions and define facets for group problems. The mingling and 2-step mingling inequalities of Atamtürk and Günlük (Math Program 123(2):315–338, 2010) are also derived based on MIR a...
متن کاملThe Complexity of Lifted Inequalities for the Knapsack Problem
Hartvigsen, D. and E. Zemel, The complexity of lifted inequalities for the knapsack problem, Discrete Applied Mathematics 39 (1992) 11. 123. It is well known that one can obtain facets and valid inequalities for the knapsack polytope by lifting simple inequalities associated with minimal covers. We study the complexity of lifting. We show that recognizing integral lifted facets or valid inequal...
متن کاملThe continuous knapsack set
We study the convex hull of the continuous knapsack set which consists of a single inequality constraint with n non-negative integer andm non-negative bounded continuous variables. When n = 1, this set is a slight generalization of the single arc flow set studied by Magnanti, Mirchandani, and Vachani (1993). We first show that in any facet-defining inequality, the number of distinct non-zero co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 96 شماره
صفحات -
تاریخ انتشار 2003